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Introduction

• The error detecting performance of a linear code depends on

the probability that it fails to detect transmission errors.

• The code is proper if this probability is an increasing function

of the channel symbol error probability.

• Codes optimal in different ways or close to optimal turn out

to be proper.

• Are properness and optimality closely related? How?
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Linear codes.

• C - a linear [n, k, d]q code over the finite field of q elements

GF (q).

(C is a k-dimensional subspace of the n-dimensional vector space

GF (q)n, with Hamming code distance d. The code distance is

just the minimum Hamming weight in C. The Hamming weight

of a vector equals the number of non-zero positions in it.)

• C is used to detect transmission errors on a q-ary discrete

memoryless channel with symbol error probability ε.
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Binary symmetric memoryless channel: mathemati-
cal model

Natural restriction: 0 ≤ ε ≤ q−1
q It is more likely for a symbol

to remain unchanged

Binary symmetric channel:

1− ε
0 −→ 0

↘
ε
↗

1 −→ 1
1− ε

0 ≤ ε ≤ 1/2

The channel is memoryless when the separate uses of it are
independent.
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Error detection with a linear code

• Let x ∈ C denote the code word transmitted and y ∈ GF(q)n

be the vector received.

• When y is not a codeword the decoder makes the correct

decision that a transmission error has occurred.

• When y is a codeword, the decoder decides that y was sent.

Such a decision is incorrect when y and x are different.

Transmission error remains undetected ⇔ y−x ∈ C, y−x 6= 0.
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The probability of undetected error

•The weight distribution of an [n, k, d]q code C is

{Ai, Ai = # of codewords in C of weight i, 0 ≤ i ≤ n}.

• The probability of undetected error

Pue(C, ε) =
n∑

i=d

Ai

(
ε

q − 1

)i
(1− ε)n−i, 0 ≤ ε ≤

q − 1

q
.
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To find a code which is best for error detection...

• In error detection over a particular channel, codes with the

smallest probability of undetected error would be best.

• One has to use exhaustive search in order to find such a code

• Even if we had an efficient method for finding the optimal

code, this does not solve the problem, since most often ε is not

known exactly.

• For this reason the concept of a proper code has been intro-

duced.
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Proper error detecting codes

Cheong, Barnes, Friedman 1979, Kasami-Lin 1984, Kløve, V.

Korzhik 1995

A linear code is proper, if its undetected error probability is an

increasing function of ε.

Thus a proper code performs better on better channels (with smaller sym-

bol error probability), which makes the code appropriate for use in error

detection over channels where ε is not known exactly.
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Another view to properness

• In the set of [n, k]q systematic codes, the averaging procedure gives an

increasing function (Massey 1978, Wolf and Michelson 1982)

Pue(ε) = q−(n−k)[1− (1− ε)k],

• In the set of binary [n, k] codes the average undetected error probability is

also an increasing function (Cheong and Hellman 1976)

Pue(ε) =
2k − 1

2n − 1
[1− (1− ε)n].

Hence a hypothetical “average” code in the class would be proper. In this

sense a proper code is similar to an “average” code, which makes the code

a reasonable choice in situations where we can’t do better.
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Keep close to the average if you can’t do better!
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The question of interest

• Codes, optimal in some sense, or close to optimal, are pre-

vailing in the list of proper codes (See Dodunekova, Dodunekov,

Nikolova, 2008).

We want to address the question, whether properness and op-

timality are closely related and how.

• As a first step, we have studied some length-optimal binary

codes (Jaffe and Bouyukliev, 2001)
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The extended binomial moments

• The extended binomial moments of an [n, k, d]q linear code C

with weight distribution {A0, A1, . . . , An} are defined as (Dodunekova

and Dodunekov, 1997, 2004)

A∗` =
∑̀
i=d

`(`− 1) . . . (`− i + 1)

n(n− 1) . . . (n− i + 1)
Ai, d ≤ ` ≤ n,

A∗` = 0, 0 ≤ ` ≤ d− 1.

• They are related to the extended binomial moments of the

dual code B∗` in the way

B∗` + 1 = q`−k(A∗n−` + 1), ` = 0, . . . , n.
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Discrete sufficient conditions for properness.

Let d⊥ be the dual Hamming distance.

Theorem 1.(Dodunekova and Dodunekov,1997) If

A∗` ≥ qA∗`−1, ` = d + 1, . . . n− d⊥+ 1,

then C is proper.

Theorem 2. (Dodunekova and Nikolova, 2005) Suppose C is binary. If

max(d, d⊥) ≥
⌈
n

2

⌉
or ⌈

n

3

⌉
+ 1 ≤ d⊥ ≤

⌊
n

2

⌋
and n(n + 1− 2d⊥) ≤ d(n− d⊥),

then C is proper.
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Bounds on the extended binomial moments

Theorem 3. (Dodunekova 2005) The extended binomial moment sat-

isfy

max{0, q`−n+k − 1} < A∗` < qmin(`+1−d, k+1−d⊥) − 1, ` = d, . . . , n− d⊥

A∗` = q`−n+k − 1, ` = n− d⊥+ 1, . . . , n.
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Properness and optimal linear binary codes of dimen-
sion at most 7

An [n, k, d] code is distance-optimal if no [n, k, d− 1] code exists; it

is length-optimal ( which is stronger) if no [n− 1, k, d] code exists,

and optimal, if no [n + 1, k + 1, d] or [n + 1, k, d + 1] code exists. An

optimal code cannot be obtained by shortening or puncturing

other binary linear codes. (Jaffe and Bouyukliev 2001)
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Summary of optimal binary codes with k ≤ 7, n ≤ 2k

[n, k, d] # codes [n, k, d] # codes [n, k, d] # codes
(form.equiv.) (form.equiv.) (form.equiv.)

[8,4,4] 1 [12,4,6] 1 [16,5,8] 1

[21,5,10]∗ 2 [24,5,12] 1 [28,5,14] 1

[32,6,16] 1 [38,6,18] 1 [45,6,22] 1

[48,6,24] 1 [53,6,26] 2 [56,6,28] 1

[60,6,30] 1 [24,7,10]∗ 6(5) [27,7,12] 1

[40,7,18] 172(46) [43,7,20] 7(3) [56,7,26]∗ > 19000

[59,7,28] 143(38) [64,7,32] 1 [71,7,34] 1

[75,7,36]∗ 3603 [79,7,38] 216(22) [82,7,40] 11(7)

[87,7,42] 55(36) [90,7,44] 6(6) [93,7,46] 1

[96,7,48] 1 [102,7,50]∗ 3 [105,7,52] 1

[109,7,54] 1 [112,7,56] 1 [117,7,58] 2

[120,7,60] 1 [124,7,62] 1
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Main result

Theorem 4. All codes in the above table and their duals are
proper, except those marked by an asterisk.

The proof uses Theorems 1 and 2 mentioned above. We have
used Matlab for computing the extended binomial moments of
the codes and their duals and for checking the conditions of
theorems 1 and 2. Information about weight distributions and
dual code distances has been taken from

Jaffe and Bouyukliev 2001, http://www.codetables.de/

http://www.math.unl.edu/∼djaffe2/
codes/webcodes/binary/codes.cgi?n=28k=5
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Comments

Some of the above proper codes lie on the Griesmer bound,

i.e., n =
∑k−1

0 d d
2ie. It has been noticed earlier that Griesmer

codes tend to satisfy the conditions of Theorem 2.

The extended binomial moments have shown to be a useful

tool in the study of the undetected error probability function.

It turns out that the extended binomial moments of the optimal

proper codes almost lie on the lower bound in Theorem 3.
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Thank you for your attention
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